
Journal of Sound and <ibration (2001) 242(4), 719}735
doi:10.1006/jsvi.2000.3340, available online at http://www.idealibrary.com on
THE MEASUREMENT OF STRUCTURE-BORNE SOUND
ENERGY FLOW IN AN ELASTIC CYLINDRICAL SHELL

R. S. MING, J. PAN AND M. P. NORTON

Department of Mechanical and Materials Engineering, ¹he ;niversity of=estern Australia,
Nedlands=A 6907, Australia. E-mail: rming@mech.uwa.edu.au

(Received 14 April 2000, and in ,nal form 20 September 2000)

Structural waves in a cylindrical shell can be decomposed into di!erent circumferential
modes. The energies carried by these modes usually need to be quanti"ed and ranked for the
purposes of noise and vibration control. In this paper, a theoretical basis is outlined for
a method to measure the energy #ow components of di!erent circumferential modes
through a cross-section of a circular cylindrical shell. This new method has potential to
measure energy #ow carried by higher order circumferential modes (n*3). Experimental
results obtained on a thin-walled circular cylindrical shell show that this proposed method
can be used to accurately measure the total energy #ow and its components.
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1. INTRODUCTION

Structural vibration of a cylindrical shell exhibits a modal pattern in the circumferential
direction. Each circumferential mode may have several axial wave types such as #exural,
extensional and torsional waves characterized by purely real, purely imaginary or complex
wavenumbers. As far as energy #ow is concerned, only those with purely real wavenumbers
are of interest because the energy carried by the corresponding waves propagates away from
the source region. Di!erent wave types may exchange energy as they come across the
discontinuity along cylindrical shells. To illustrate the behaviour of the energy #ow through
a cross-section of a cylindrical shell, it is necessary to distinguish and determine all the
participating energy #ow components associated with di!erent circumferential modes.

The structural intensity technique has the ability to distinguish and rank the energy #ows
of di!erent wave types. Most of its application is concentrated on beams and plates [1}5].
Verheij [6, 7] has applied the far"eld (two-transducer) intensity technique to measure the
energy #ow components in #uid-"lled cylindrical shells. The technique provides a practical
method to measure the energy #ow in pipes at frequencies below the cut-o! frequency of the
n"2 circumferential mode. Later, Jong and Verheij [8] proposed a method to extend the
upper frequency limit to the cut-o! frequency of the n"3 circumferential mode. This
method utilizes the symmetrical nature of the circular cylindrical shell and a group of
accelerometers on the shell surface to obtain the circumferential modal amplitudes and
phases. Briscoe and Pinnington [9] have presented several di!erent techniques for the
measurement of n"0 axisymmetric wave energy #ows in #uid-"lled and empty circular
cylindrical shells. Their intensity probes consists of accelerometers and PVDF sensors, or
their combination.

For cylindrical shells with large diameters, the cut-o! frequencies of n"3 and 4
circumferential modes may be within the frequency range of interest. The work presented in
0022-460X/01/190719#17 $35.00/0 ( 2001 Academic Press
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this paper is a natural extension of the previous method for the measurement of total energy
#ow and its components in a uniform circular cylindrical shell. This method uses an array of
accelerometers to simultaneously measure dynamical responses at several positions around
the cross-sections of interest in a cylindrical shell. Then the method of least squares [10] is
used to determine the polarization angle of each circumferential model and to obtain the
axial, tangential and radial acceleration components of every circumferential mode at these
cross-sections. The Flugge theory [11] is applied to formulate the energy #ow. A laboratory
experiment was carried out to verify this proposed method and the assessment is made
based on the direct measurement of input power using an impedance head and the method
described in reference [8].

The work described in this paper may be signi"cant because:

f it extends the upper limit of the frequency range for energy #ow measurement in pipeline
systems to above the cut-o! frequency of n"3 circumferential mode;

f in principle, this method allows the measurement of total energy #ow, even though only
part of the cross-section of the cylindrical shell is accessible.

2. ENERGY FLOW

Consider a uniform thin-walled circular cylindrical shell of thickness h and mean radius a.
The midsurface of the shell is described in an (a, h,x) cylindrical co-ordinate, as shown in
Figure 1. If u, v and w represent the displacement components of the shell midsurface in the
axial, tangential and radial directions, respectively, the instantaneous axial structural
intensity component can be expressed as [12]
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Figure 1. Schematic diagram of the experimental set-up.
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where p
x

is the normal stress, and q
xh and q

xr
are the shear stresses in the tangential and

radial directions at the cross-section of x [11]. The time-averaged total axial structural
energy #ow across a cross-section is given by [11]
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where S T
t
means the temporal average. The temporal average in the time domain has

equivalent operations in the frequency domain [3]. In the frequency domain, the
dependence of displacement components, u, v and w, on h can be assumed in the following
forms [11, 13]:
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where n is the circumferential modal number, h
n0

is a constant number representing the
polarization angle of the nth circumferential mode, and u

n
, v

n
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n
are the functions of

x and radian frequency u respectively. In general, h
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does not hold. For

a single-force excitation, however, this relation will hold. For the breathing mode n"0, the
tangential displacement component v

0
is usually not equal to zero in practice and needs to

be considered during the measurements. The non-zero value of v"v
0

represents a pure
torsional wave propagating along the cylindrical shell and it is uncoupled from the other
two orthogonal displacement components, u

0
and w

0
.

If the Flugge theory [11] is adopted, in the frequency domain the Fourier transform of
equation (2) can be expressed as
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where k is the Poisson ratio, & denotes a Fourier transform, * denotes a complex
conjugate and Im means the imaginary part. e

0
"2 and e
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torsional and #exural wave energy #ows in a uniform plate respectively (na in the parameter
D is equal to the plate width). Using the "nite di!erence approximation, the "rst order
partial derivative of displacement with respect to x can be approximated from the
displacements measured at two close cross-sections [2]. However, the terms Pn

xL
and Pn

xB
contain the second and third partial derivatives. Therefore, in general, the estimation of
energy #ow in equation (4) needs to measure all the displacement components, u, v and w, at
four neighbouring cross-sections.

If the cross-section (or positions) of interest is in the far "eld where decaying waves are
insigni"cant and if only one single real wavenumber k

n
is present for each circumferential

number n in the frequency range of interest (this is usually the case at low frequencies), the
second order partial derivatives of uJ
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and wJ
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can be rewritten as
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Substituting the above equation into equation (5) gives
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(7)

which contain only the "rst derivatives. In this case, the energy #ow can be estimated from
the displacement components measured at two close cross-sections.

3. MEASUREMENT METHOD

3.1. WAVE-TYPE DECOMPOSITION

In order to determine the energy #ow of a cylindrical shell, it is necessary to measure three
orthogonl components of the displacement or acceleration in the midsurface of the shell.
Practically, these components can be estimated from the measurements made on the outer
surface of the shell using the following relationships [11]:
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where d is the distance between the main axis of the rotational accelerometer and the
midsurface of the shell, and u

m
, v

m
and w

m
are, respectively, the measured values in the axial,

tangential and radial directions on the outer surface of the shell. To calculate the axial and
tangential displacement components u and v, it is necessary to measure the radial
displacement component w "rst.
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Combining equations (3) and (8) gives
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Note that u
mn

, v
mn

and w
n
we are complex and they are characterized by an amplitude and

phase (or real and imaginary parts). In order to determinate all the displacement
components at frequencies below the cut-o! frequency of the nth circumferential mode, it is
required to perform the measurement of three orthogonal displacement components on at
least N"(2n!1) positions (for a single-force excitation, h

n0
"nh

10
holds, NQ will reduce to

n#1) at the cross-section of interest. The required minimum measurement position
number depends on the number of unknown coe$cients of the circumferential modes of
interest. It is also noted that the separation distance between adjacent accelerometers
should be less than na/n to satisfy the Nyquist spatial sampling criterion [14]. Since the
calculation of u requires the "rst order derivative of w, the radial displacement component
also needs to be measured at two adjacent cross-sections close to the cross-section of
interest.

Although theoretically a vector containing N unknown quantities can be determined
from N experimental data, the solution is usually unreliable because of measurement errors
and ill-conditioned coe$cient matrices due to inappropriate measurement locations
selected. A reliable solution needs more than N measurement positions. The accuracy
increases with increasing the number of measurement positions [10].

The method of least squares [10] can be used to determine u
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n

from the
measured real and imaginary parts of u

m
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m
at more than (2n!1) position around

a cross-section. For example, for the determination of the radial displacement component at
frequencies below the n"3 cut-o! frequency, w
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can be obtained from the minimization of

its error function
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where N('(2n!1)"5) is the total number of the measurement positions on the
cross-section of interest and wi

m
is the measured radial displacement component at position

i. To obtain a minimum value of the error function, both w
n
and h
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minimization of e
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"nding the minimum value of the error e

w
(h

n0
). The "nal result of the two minimizations

gives rise to the modal amplitude and true h
n0

.

3.2. METHOD OF TRANSFER FUNCTIONS

In equations (4), (5) and (7), the imaginary part of the product of two complex quantities
can be determined from their cross-spectrum or their transfer functions with reference to the
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same stable signal [3, 4]. For example,
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) and G(F) represent cross- and auto-spectra. Therefore, the energy #ow in
a cylindrical shell can be determined from the measured cross-spectra or transfer functions.

3.3. TRANSVERSE SENSITIVITY OF THE ACCELEROMETERS

The non-zero transverse sensitivity of an accelerometer indicates that the output of the
accelerometer will not only be related to its main-axis acceleration but also to the
transverse-axis accelerations. For a cylindrical shell, three orthogonal displacement
components are present and coupled. The displacement component measured by an
accelerometer is related to all three orthogonal displacement components at the
accelerometer location. If (ua , va , wa) are the output from the three accelerometers with their
main axes directed along the axial, tangential and radial directions, they can be related to
the local outer surface displacement components (u
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where aah is the tangential component of the transverse sensitivity of the accelerometer
whose main axis is directed along the axial direction. The transverse sensitivity components
of each accelerometer can be determined experimentally [5]. Therefore, (u

m
, v

m
, w

m
) can be

determined at each location from the accelerometer outputs (ua , va , wa).
The transverse sensitivity is usually very small (less than 5%). If all three orthogonal

displacement components are in the same order, the error caused by the accelerometer
transverse sensitivity may be small and can be neglected. However, if one displacement
component is much higher than the other components (for example, the axial vibration
dominates at low frequencies for the breathing circumferential mode), equation (12) should
be used to eliminate the contribution from other orthogonal displacement components
when the small displacement component is measured.

3.4. JONG}VERHEIJ'S METHOD

Jong and Verheij [8] used the symmetrical nature of the circular cylindrical shell to
decompose the circumferential modes at frequencies below the cut-o! frequency of n"3
circumferential mode, where the n'2 circumferential modal displacement components are
negligible. For example, the radial displacement component can be approximated as
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where three modal amplitudes (w
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) and two phase angles (h
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be determined from the measurements. If eight measurement positions are uniformly
localized around the shell surface at the cross-section of interest, as shown in Figure 2, the
modal amplitudes and phase angles of the radial displacement component can be



Figure 2. Accelerometer con"gurations for circumferential mode decomposition [8].
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determined by the following equations:
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where w
A

represents the radial displacement component measured at location A. In a similar
way, the modal amplitudes and phase angles of the axial and tangential displacement
components can also be determined.

4. EXPERIMENTAL RESULTS

4.1. EXPERIMENTAL SET-UP

As shown in Figure 1, a 2)2 m long steel circular cylindrical shell of a"32)5 mm and
h"1)7 mm was used in the experiment. The shell was lying along the X direction of
a Cartesian co-ordinate system. One end of the shell (0)5 m) was buried in a dry sand-"lled
box to provide an e!ectively absorptive termination for all circumferential modes and
wavetypes. The other end of the shell was free and attached with a mechanical shaker which
was driven with pseudo-random noise. A shaker was connected to an adaptor (angle of 453
to the X-axis and also to the plane of the end cross-section) which was attached to the inside
wall surface of the shell. This arrangement allows the excitation of all the wave types in the
shell. A piano wire "xed on a frame was used to provide a support at a position 0)5 m away
from the free end.

The aim of this experiment is to demonstrate the feasibility of the above described
measurement method. The circumferential modes of n"0, 1, 2, 3 were considered and
the frequency range of analysis was set upto 6 kHz (the cut-o! frequencies of the n"
2, 3, 4 circumferential modes are 1)03, 2)91 and 5)58 kHz, respectively, which are calculated
by using the Love}Timoshenko theory [13]). Since the frequency characteristics of the
shaker being used is not #at (decreases with increasing frequency after 1)36 kHz) in this
frequency range, it is not possible to obtain a good signal-to-noise ratio using one input
power level. Therefore, two sets of measurements were carried out. One is that the
pseudo-random noise signal output from a signal generator was directly input to the shaker
via a power ampli"er and the upper frequency limit of the analyzer was set to 3)2 kHz. The
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data at frequencies below the n"3 cut-o! frequency are obtained from this set of
measurement. Another is to use an octave frequency "lter which was set at the centre
frequency of 4 kHz (the upper and lower frequency limits are 2825 and 5650 Hz) to ensure
a good signal-to-noise ratio at frequencies between the cut-o! frequencies of the n"3,
4 circumferential modes.

To compare the power transmission with the input power, an impedance head was
mounted at the driving location. The shaker and the impedance head were connected by
a steel rod of 30 mm in length and 1 mm in diameter to avoid the transmission of possible
transverse force which would cause errors in the input power measurement. The total input
power can be calculated using the force and acceleration signals, F and a

s
, output from the

impedance head, that is
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which is referred to directly measured input power in the following sections. A B&K4375
accelerometer was used to pick up the radial acceleration signal. For the measurement of
axial and tangential acceleration components, the same accelerometer was mounted on an
aluminium cube of 10 mm side dimensions to construct a rotational accelerometer.

The transverse sensitivity of an accelerometer may depend on the frequency but the
magnitude should be of the same order. Also, the axes where the accelerometer has its
maximum and minimum transverse sensitivity readings should not be changed with
frequency and they are orthogonal. To identify the maximum magnitude order and the
minimum transverse sensitivity axis of the accelerometer, a B&K4294 Calibration Exciter
and an aluminium cube were used. The maximum and minimum transverse sensitivity axes
were marked on the accelerometer. The transverse sensitivity components in the two
orthogonal transverse axes were 0)91 and 2)67%, respectively, at 159 Hz. During the
measurements, the two orthogonal transverse axes (or the marked points) were directed
along the axial, tangential or radial directions, respectively, depending on which
acceleration component is of interest. The calculations using equation (12) and by assuming
that the maximum and minimum transverse sensitivities are 5% ('2)67%) and 1%
('0)91%), respectively, indicate that for our experimental results the errors due to the
presence of accelerometer transverse sensitivity are small ((1.8%) and negligible.

The cross-section of interest was 1)0 m away from the excitation end. In order to compare
this proposed method with the method described in reference [8], two sets of measurement
positions were chosen. For the measurements of the n"0, 1, 2 tangential modal
acceleration components, eight measurement positions were uniformly distributed (the
radial angle between the neighbouring positions was 453) around the cross-section, as
shown in Figure 2. This set of measurement positions allows the comparison between the
method proposed in this paper and the method presented by Jong and Verheij [8] based on
the same data. Due to the increase of the circumferential modal number from 3 to 4 in the
frequency range between the cut-o! frequencies of n"3 and 4, 16 measurement positions
were chosen (the radial angle among the neighbouring positions was 22)53) around the
cross-section to increase the measurement accuracy. Every acceleration component (both
real and imaginary parts) was recorded using the transfer function mode of an FFT analyzer
with the force signal from the impedance head as the reference.

To minimize the positioning error of the transducer (the di!erence between the
theoretically assumed transducer position and the actual measurement position), the
measurement positions were marked before the measurements and care was taken during
the measurements to ensure that the transducer was located at the marked points. The error
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due to the positioning accuracy of the transducer depends on the property of the wave"eld
and the measurement location [15]. If the wave"eld is not very reactive and the normalized
positioning error (the ratio of the positioning error to the di!erence between the
measurement (angular) positions) is less than 5% (or 10%), this type of error will be less
than 3% (or 5%).

4.2. MEASUREMENT OF TRANSFER FUNCTIONS

The essence of this proposed method is to use the method of least squares to decompose
the circumferential mode from the measured data. To assess its accuracy, the method
proposed by Jong and Verheij [8] was used as a reference method in the frequency range
below the cut-o! frequency of n"3 circumferential mode and the comparisons were made
based on the same data. Equation (8) was used to eliminate the interaction between di!erent
wavetypes.

Figures 3}5 show the comparisons between the magnitudes of the acceleration
components obtained using the methods of least squares and the method proposed in
reference [8] respectively. It can be seen that the overall torsional response (tangential
vibration component) is strong for all circumferential modes in the frequency range of
interest. At frequencies below the cut-o! frequency (1)03 kHz) of the n"2 circumferential
mode, the extensional mode (axial vibration component) has a larger response than the
#exural mode for n"0 while the #exural mode (radial vibration component) becomes
larger for n"1. The comparison of the two methods shows that a good agreement can be
obtained when the circumferential modal response is relatively large. Di!erence in the
measured responses occurs when the response is very small. The poor agreement appears
especially in the frequency range above the cut-o! frequency of the n"2 circumferential
mode. This could be partly due to the increase of circumferential mode number. For
the same number of measurement positions, the accuracy of wave decomposition made
by the method of least squares may decrease with increasing the number of unknown
quantities [10].

Figure 6 shows the magnitudes of the n"3 axial, tangential and radial acceleration
components obtained using the methods of least squares at frequencies between the cut-o!
frequencies of the n"3, 4 circumferential modes. All the magnitudes decrease with
increasing frequency and become very small at frequencies close to the cut-o! frequency of
the n"4 circumferential mode. The radial vibration level is the largest. The tangential
vibration level is larger than the axial one at frequencies close to the n"3 cut-o! frequency
but becomes smaller with increasing frequency. This "gure also shows that the n"3 cut-o!
frequency is 3016 Hz rather than 2)91 kHz predicted by using the Love}Timoshenko theory
[13]. At frequencies below the n"3 cut-o! frequency and above the n"4 cut-o!
frequency, the curves are not correct because the calculation is inaccurate.

4.3. MEASUREMENT OF ENERGY FLOW

The energy #ow in a cylindrical shell can be calculated based on equations (4), (7) and (11)
from the measured transfer functions. For the cylindrical shell being considered, the
calculated wavenumbers indicate that only one propagating wave was present for each
circumferential mode in the frequency range of interest and the decaying waves should
become insigni"cant at frequencies above 5 Hz on the measurement positions. Therefore,
equation (6) can be used. The "rst order derivatives of displacement or acceleration



Figure 3. Measured magnitudes of the axial acceleration component for the circumferential modes of (a) n"0,
(b) n"1 and (c) n"2. respectively, by using the method of least squares (**) and the method proposed in
reference [8] (} } } } } ).
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components were estimated from two measurements on the neighbouring cross-sections,
the distance between which was 0)3 m (n"0, 1, 2) or 0)12 m (n"3) for extensional
wavetype, 0)2 m (n"0, 1, 2) or 0)08 m (n"3) for torsional wavetypes and 15 mm (n"0, 1,
2,) or 10 mm (n"3) for #exural wavetype respectively. The "nite di!erence error of each
"rst derivative approximation was corrected using the following expression [16] during



Figure 4. Measured magnitudes of the tangential acceleration component for the circumferential modes of
(a) n"0, (b) n"1, and (c) n"2, respectively, by using the method of least squares (**) and the method proposed
in reference [8] (} } } } } ).
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data processing:

A
corrected

"

kD

sin (kD)
A

measured
, (16)

where A
measured

and A
corrected

represent the measured and corrected "rst order derivatives,
D is the distance between the two measurement positions (or cross-sections) and k is the



Figure 5. Measured magnitudes of the radial acceleration component for the circumferential modes of (a) n"0,
(b) n"1 and (c) n"2, respectively, by using the method of least squares (**) and the method proposed in
reference [8] (} } } } } ).
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wavenumber. Figures 7(a) and 7(b) show the distance between wavelength ratios (D/j) and
the predicted normalized "nite di!erence errors (e"(A

corrected
!A

measured
)/A

corrected
) of

extensional, torsional and #exural wave types. The jumps in the curves at 3 kHz result from
the use of di!erent distance values (D) below and above this frequency.

Figure 8 shows the comparisons of the energy #ow components for the n"0, 1, 2
circumferential modes obtained by the two methods respectively. The n"1 energy #ow



Figure 6. Measured magnitudes of the axial (} }} } }), tangential (- - - - -) and radial (**) acceleration
components for the circumferential mode of n"3 using the method of least squares (from 16 measurement
positions).

Figure 7. Distance of wavelength ratios (D/j, %) (a) and predicted normalized "nite di!erence errors (e, %) (b)
of the "rst order derivatives for extensional (} } } } }), torsional (- - - -) and #exural (**) wave types respectively.
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component dominates at frequencies below the cut-o! frequency of the n"2
circumferential mode while the n"2 energy #ow component dominates at frequencies
between the cut-o! frequencies of the n"2 and 3 circumferential modes. At very low
frequencies (below 50 Hz for this measurement), the energy #ow components seem



Figure 8. Measured energy #ow components of the (a) n"0, (b) n"1 and (c) n"2, circumferential modes,
respectively, by using the proposed method (**) and the method described in reference [8] (} } }} } ).
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unmeasurable by either methods. The main reason could be due to a poor signal-to-noise
ratio (Figures 3}5 show very small magnitudes for all the circumferential modes and all the
wavetypes) and a very small energy #ow resulting in a small phase change in the signals (for
calculating the "rst derivative) measured on two neighbouring cross-sections. The measured
signals were totally corrupted by noises. For the breathing mode n"0, the agreement is
good especially at low frequencies although some discrepancy is present but the curve
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shapes are similar. The negative energy #ow, which is not plotted in the "gures, could be due
to that the true energy #ow was very small and the measured signals were corrupted by
noises. For n"1, the curves shapes are not similar at frequencies below 500 Hz but their
values are close. For n"2, the agreement is very good at frequencies above the cut-o!
frequency of the n"2 circumferential mode. The disagreement at low frequencies is because
no such energy #ow was present and the measured data were residual.

Energy #ow contains the information of magnitude and phase of displacement. The very
good agreement in Figures 3}5 and some discrepancy in Figure 8 for the same
circumferential mode indicate that a small phase di!erence is usually present between the
results obtained by the two methods. There could be two possible reasons. The "rst is the
positioning error of the transducer, that is, the actual measurement positions may slightly
depart from the theoretically assumed positions. This could be the main error source for the
method proposed in reference [8]. The second is that the method of least squares can only
give approximate results, therefore, an error usually exists in each "nal result. This error
should decrease with increasing the number of measurement positions.

Figure 9 shows the comparisons between the directly measured input power and the total
energy #ows obtained by the two methods. It can be seen that the total energy #ows
obtained by both methods agree well with the directly measured value. However, in the low
(below 500 Hz) and high (above 2 kHz) frequency ranges the method proposed in this paper
gives a better agreement with the direct measurement than the method presented in
reference [8].
Figure 9. Comparisons between the directly measured input power (} } }} }) and the total energy #ows (**)
measured by the proposed method (a) and the method described in reference [8] (b).



Figure 10. Comparisons between the directly measured input power (} } } } }) and the total energy #ow (**)
measured using the proposed method (from 16 measurement positions).
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Figure 10 shows the comparison between the directly measured input power and the total
energy #ow obtained by the proposed method at frequencies between the cut-o! frequencies
of the n"3, 4 circumferential modes. The agreement is reasonably good especially at
frequencies close to the n"3 cut-o! frequency. As frequency increases, the proposed
method gives smaller values than the direct measurement. Possible reasons could be:

1. The input power decreased with increasing frequency resulting in a poorer
signal-to-noise ratio at higher frequencies.

2. With increasing frequency the mass of the accelerometer may become signi"cant
compared with the modal mass of the shell. The e!ect of accelerometer mass loading
was not considered during the data processing.

For a large diameter cylindrical shell, the cut-o! frequencies of circumferential modes
become smaller. The above errors could be reduced and the measurement accuracy of the
energy #ow carried by higher circumferential modes can be improved. The disagreement at
frequencies below the n"3 cut-o! frequency is because the n"3 circumferential mode was
considered in this frequency range during the data processing.

5. CONCLUSIONS

A method is proposed in this paper to measure the energy #ow through a thin-walled
cross-section of a cylindrical shell. The outlines theory is experimentally veri"ed on a steel
cylindrical shell. The measured results demonstrate that in the frequency range below the
cut-o! frequency of the n"4 circumferential mode, this new method can be used to
accurately measure the total energy #ow and its components. At frequencies below the
n"3 cut-o! frequency, this method gives identical results as the existing method but it does
not require that the cross-section of interest is fully accessed and that the measurement
positions are uniformly distributed.
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